Fill in the blanks by writing the <u>symbolic</u> translations. Do not use \sim , \cup , \cap , - or C in your answers. (Assume that x is a particular element, and A and B are subsets of universal set U.)

SCORE: ____/4 PTS

eg. $x \in A \cup B^C$ if and only if $x \in A \lor x \notin B$

[a]
$$x \in A^C - B^C$$
 if and only if $x \notin A \land x \in B$

[b]
$$x \notin A \cap B$$
 if and only if $x \notin A \lor x \notin B$

[c]
$$B^C \not\subset A$$
 if and only if $(\exists x \in U : x \notin B \land x \notin A) \lor (\forall x \in A : x \notin B)$

NOTE: \subset means "is a <u>proper</u> subset of".

Prove that for all sets A and B , if $A \cap B = A$, then $A \cup B = B$.	SCORE:	/6 PT
NOTE: You may NOT use Theorems 6.2.2, 6.2.3, Proposition 6.2.6, or any exercises from the textbook	as justification.	
Von may use Theorem 6.2.1 as justification		

Proof: Let A and B be particular but arbitrarily chosen sets such that $A \cap B = A$

 $B \subseteq A \cup B$ by Theorem 6.2.1.2b

Let x be a particular but arbitrarily chosen element of $A \cup B$

So, $x \in A$ or $x \in B$ by definition of \cup

Case 1: $x \in A$

So, $x \in A \cap B$ (since $A \cap B = A$)

So, $x \in B$ by definition of \cap

Case 2: $x \in B$

So, $x \in B$ (by division into cases)

So, $A \cup B \subseteq B$ by definition of \subseteq

Therefore, $A \cup B = B$ by definition of =

2) POINT EACH UNLESS OTHERWISE

Prove that for all sets A	and	B, A	-B	and	$A \cap B$	are disjoint in two ways.
---------------------------	-----	------	----	-----	------------	---------------------------

SCORE: ____/ 10 PTS

[a] without using Theorems 6.2.1, 6.2.2, 6.2.3, Proposition 6.2.6, or any exercises from the textbook as justification (this is the style of proof presented in lecture)

Proof by contradiction:

Assume not, that is suppose there are sets A and B such that A-B and $A\cap B$ are not disjoint

So, $(A-B) \cap (A \cap B) \neq \emptyset$ by definition of disjoint

So, there exists an element $x \in (A - B) \cap (A \cap B)$ by definition of \emptyset

BOTH PARTS:

 $x \in A - B$ and $x \in A \cap B$ by definition of \cap

 $x \in A$ and $x \notin B$ by definition of -

 $x \in A$ and $x \in B$ by definition of \cap

D POINT EACH

UNLESS OTHERWISE

NOTED

So, $x \notin B$ and $x \in B$ (contradiction)

Therefore, by contradiction, for all sets A and B, A-B and $A \cap B$ are disjoint.

[b] using only Theorem 6.2.2 (this is the style of proof in examples 6.3.2 and 6.3.3 in your textbook)

NOTE: Remember to use the commutative and associative laws properly

 $(A-B)\cap (A\cap B)$

$$=(A \cap B^C) \cap (A \cap B)$$
 Set Difference Law

$$= ((A \cap B^C) \cap A) \cap B \qquad \text{Associative Law}$$

$$=(A \cap (A \cap B^C)) \cap B$$
 Commutative Law

$$=((A \cap A) \cap B^C) \cap B$$
 Associative Law

$$=(A \cap B^C) \cap B$$
 Idempotent Law

$$=A \cap (B^C \cap B)$$
 Associative Law

$$= A \cap (B \cap B^C)$$
 Commutative Law

$$=A\cap\emptyset$$
 Complement Law

$$=\emptyset$$
 Universal Bound Laws

MUST HAVE PROPER
JUSTIPICATION ON
EACH LINE TO BARN
ANY POINTS FOR
THAT LINE

Let B be a Boolean algebra with operations + and \cdot , SCORE: /6 PTS and let a and b be particular but arbitrarily chosen elements of B. Prove the following statements (which are **NOT** related to each other). NOTE: Along with the definition of a Boolean algebra, you may use Theorem 6.4.1 as justification without proving it. Remember to use the commutative and associative laws properly If $a \cdot b = 1$, then a = 1[a] [6] If a+b=a, then $a \cdot b=b$ a $= a \cdot 1$ Identity Law $=(a+b)\cdot b$ Given $=(b+a)\cdot b$ Commutative Law

$$= a \cdot (a \cdot b) \qquad \text{Given}$$

$$= (a \cdot a) \cdot b \qquad \text{Associative Law}$$

Given / 🕏

$$= a \cdot b \qquad \text{Idempotent Law}$$

MUST HAVE PROPER JUSTIFICATION ON BACH LINE TO BARRN ANY POINTS FORTHAT

One of the	following	statements	is true	and	one	is	fal	se

SCORE: /9 PTS

State clearly which statement is false, show clearly that it is false, then write a formal proof for the true statement.

NOTE: You may NOT use Theorems 6.2.2, 6.2.3, Proposition 6.2.6, or any exercises from the textbook as justification.

You may use Theorem 6.2.1 as justification.

HINT: You may use exactly ONE of the assigned homework exercises as a justification in your proof without proving it.

[a] For all sets A and B,
$$\wp(A-B) \subseteq \wp(A) - \wp(B)$$

[b] For all sets A and B,
$$\wp(A \cap B) = \wp(A) \cap \wp(B)$$

[a] is false.

If
$$A = B = \emptyset$$
,

then
$$\wp(A-B) = \wp(\varnothing-\varnothing) = \wp(\varnothing) = \{\varnothing\},\$$

but
$$\wp(A) - \wp(B) = \wp(\varnothing) - \wp(\varnothing) = \varnothing$$

[b] is true.

Let A and B be particular but arbitrarily chosen sets

Let X be a particular but arbitrarily chosen element of $\wp(A \cap B)$

So, $X \subseteq A \cap B$ by definition of \wp

and $A \cap B \subseteq A$ and $A \cap B \subseteq B$ by Theorem 6.2.1.1

So, $X \subseteq A$ and $X \subseteq B$ by Theorem 6.2.1.3 (transitivity of \subseteq)

So, $X \in \wp(A)$ and $X \in \wp(B)$ by definition of \wp

So, $X \in \wp(A) \cap \wp(B)$ by definition of \cap

So, $\wp(A \cap B) \subseteq \wp(A) \cap \wp(B)$ by definition of \subseteq

POINT EACH
UNLESS OTHERWISE
NOTED

Let X be a particular but arbitrarily chosen element of $\wp(A) \cap \wp(B)$

So, $X \in \wp(A)$ and $X \in \wp(B)$ by definition of \cap

So, $X \subseteq A$ and $X \subseteq B$ by definition of \wp

So, $X \subseteq A \cap B$ by 6.2 Exercise 16

So, $X \in \wp(A \cap B)$ by definition of \wp

So, $\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$ by definition of \subseteq

So, $\wp(A \cap B) = \wp(A) \cap \wp(B)$ by definition of =